

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

Non-destructive analysis of element and isotope composition by neutron spectroscopy methods

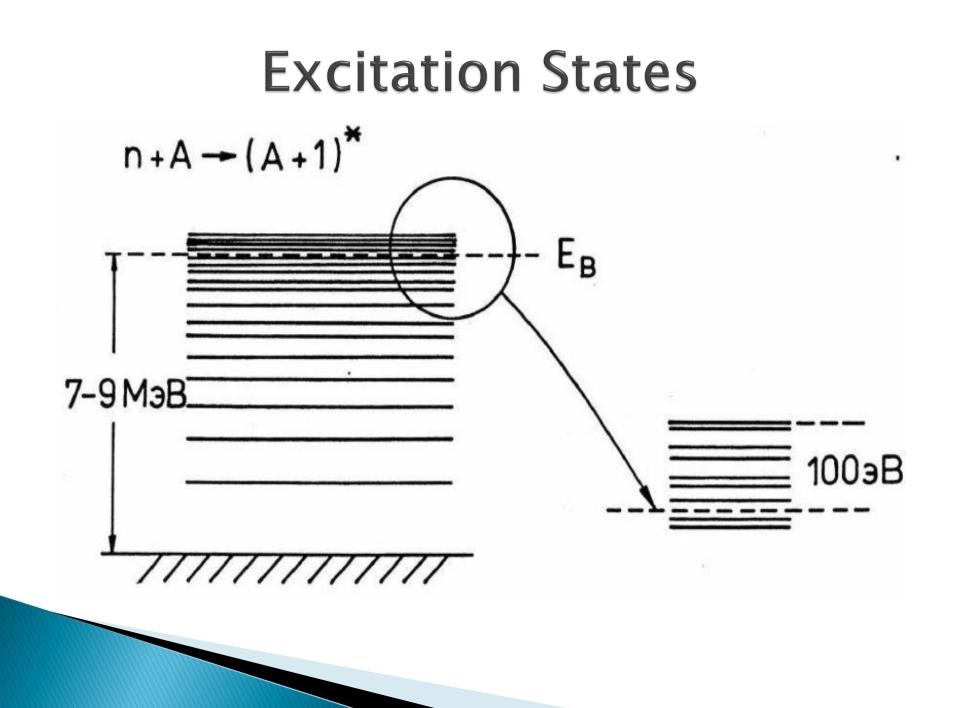
Frank Laboratory of Neutron Physics

Supervisors: Nina V. Bazhazhina, Pavel V. Sedyshev Participant: Ioana Lalău, Faculty of Physics, University of Bucharest

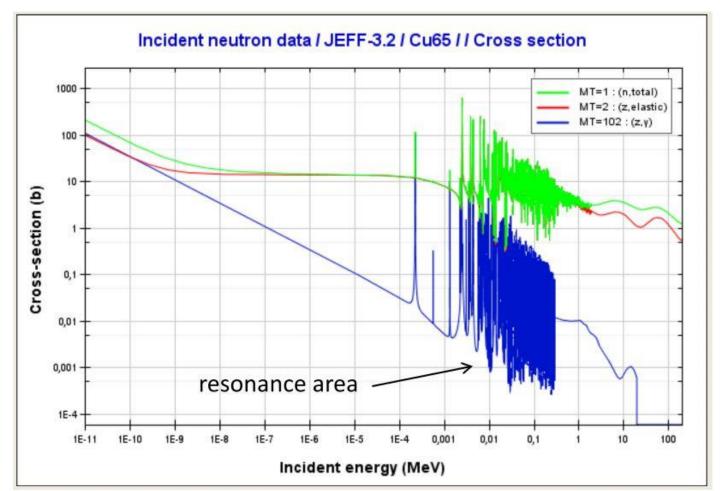
July, 2017

CONTENT

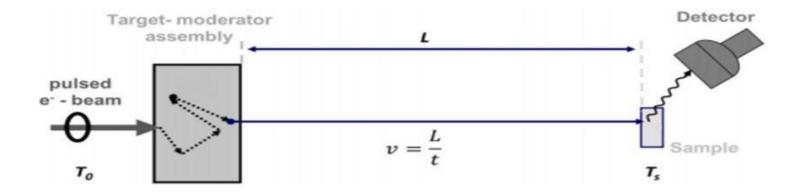
- ▶ Task
- Theory
- Experimental setup-IREN facility
- Data analysis
- Results


Task

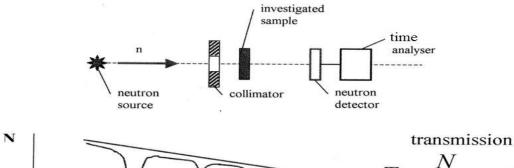
Determination of isotope and element composition of unknown sample

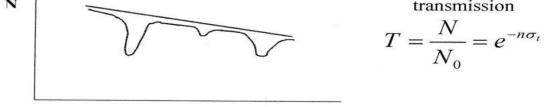

Determination of isotop mass

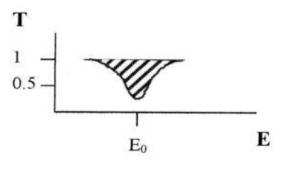
Analysis by neutron spectroscopy


- Neutron spectroscopy is a part of neutron physics studying the energy dependence of effective cross sections of different neutron-nuclei interactions and obtained nuclei excited state characteristics.
- Neutron resonances are characteristic for every isotope and can be used as a "fingerprint" for the identification of elements.

Dependence of Total Cross Section on Neutron Energy

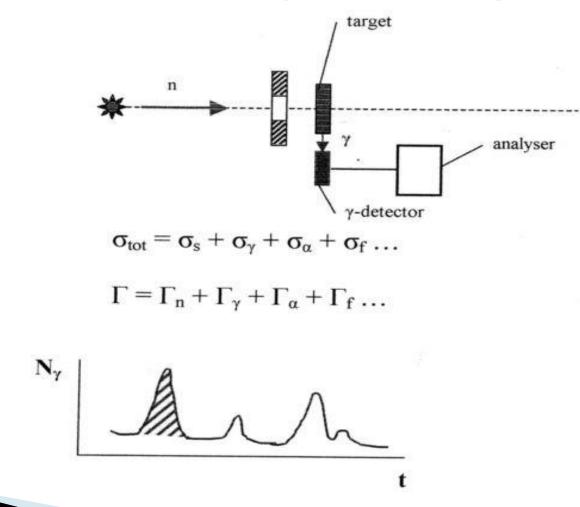



Time of flight method



$$E = \frac{1}{2} \mathbf{m} \mathbf{v}^2 = \frac{(72.3 L)^2}{t^2} = \frac{1.78 x 10^7}{(t - \Delta t)^2}$$

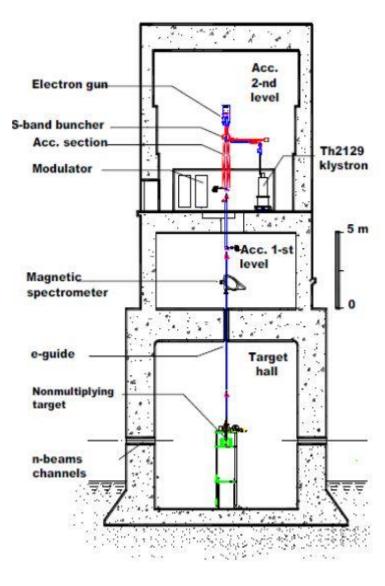
Neutron transmission measurement(Total cross section)



Resonance area on the transmission curve

$$A = \int_{-\infty}^{\infty} [1 - T(E)] dE$$

$$4 = \frac{\pi n \sigma_0 \Gamma}{2} e^{-\frac{n \sigma_0}{2}} \left[I_0 \left(\frac{n \sigma_0}{2}\right) + I_1 \left(\frac{n \sigma_0}{2}\right) \right]$$

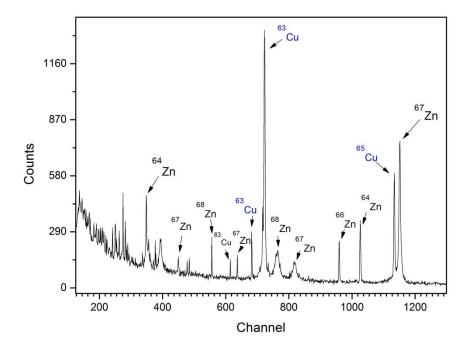

Partial cross sections measurement (Neutron capture analysis)

Eperimental setup-IREN facility

 The investigations are carried out at the Intense REsonance Neutron source(IREN) of FLNP. (Pulsed Neutron Source)

IREN parameters	
Peak current (A)	3
Repetition rate (Hz)	50
Electron pulse duration (ns)	100
Electron energy (MeV)	30
Beam power (kW)	0.4
Multiplication	1
Neutron intensity (n/s)	1011

Liquid Scintillator Detector


- Detector contains 6 sections forming together the cylinder with the channel along the neutron beam direction.
- A pair of photomultypliers tubes in both ends of each section.

L=600 mm, D(ext)=730 mm, D(int)=300 mm

Data Analysis

Channel	E _n (eV)	Isotopes
1152	223.1	⁶⁷ Zn
1134	230	⁶⁵ Cu
1026	281.8	⁶⁴ Zn
959	323.5	⁶⁶ Zn
816	<u>448.2</u>	⁶⁷ Zn
764	514	⁶⁸ Zn
723	579	⁶³ Cu
682	650	⁶³ Cu
637	750	⁶⁷ Zn
615	807	⁶³ Cu
556	983	⁶⁸ Zn
485	1320.8	⁶⁷ Zn
478	1362	⁶⁵ Cu
450	1528	⁶⁷ Zn

Isotope	Mass(g)
⁶⁵ Cu	80.60
⁶⁷ Zn	59.78

Counting out sum on the resonance

$$\sum N_i = \prod (E_0) \varepsilon_{\gamma} A \frac{\Gamma_{\gamma}}{\Gamma}$$

 $\prod(E_0)$ -total neutron number have been falling on the sample during the measurement time at 1 eV energy interval

$$\varepsilon_{\gamma} - \gamma$$
-detector efficiency

A-resonance aria on the transmission curve

 Γ -total resonance width, equal to half-height peak width

 Γ_{γ} -radiation width

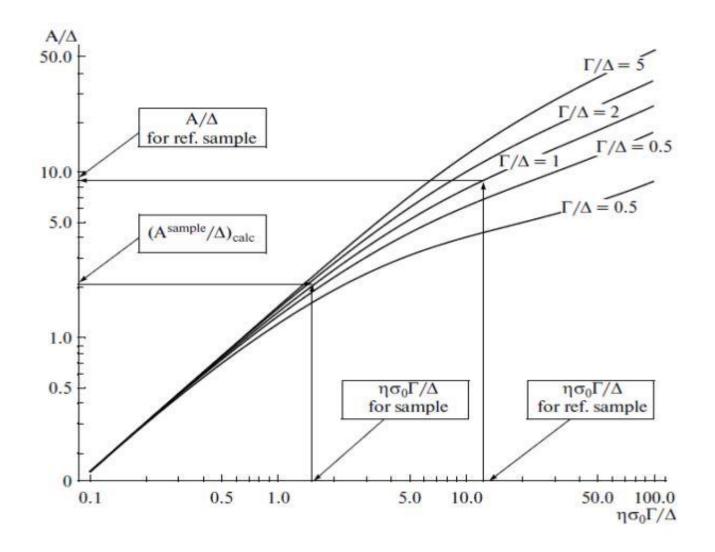
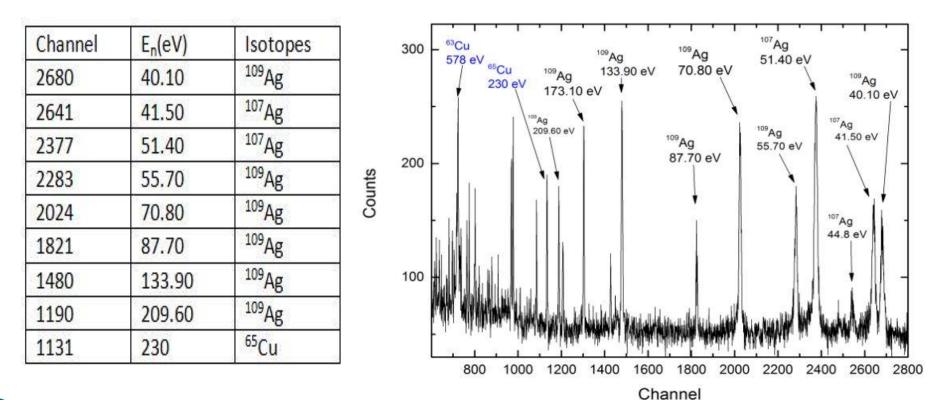


Fig. 2. Value of A as a function of the number of nuclei and the resonance parameters.

Investigated Samples


5 6 7 8 9 10 11 12 13 5 16 17 18 19 20 21 22 9-11-475 97-11-686 482 Рескупорид У Рескупорид ? Peckynopud Z ИМФ-251 ПНЭ ZMФ-250 ПНЭ @ M@- 252 ПНЭ Q-11-913 92-11- 1064 860 9-11-206 2 a2-11-Peerugno pud V. PECKYNOPEDY 019- 242. 7.35 7,11 7,83 9-11-1165961 7,59 7.17 7183 7.47

Phanagoria was the largest ancient Greek city on the Taman peninsula, spread over two plateaus along the eastern shore of Cimmerian Bosporus.

The city was a large emporium for all the traffic between the coast of the Maeotian marshes and the countries on the southern side of the Caucasus.

Today the site is located at a short distance to the west of Sennoy in Krasnodar Krai, Russia.

Data Analysis TOF Method

Identified isotopes from resonance energies

Results

Isotope	Mass(g)
¹⁰⁷ Ag	5.41±0.25
¹⁰⁹ Ag	6.18±0.48
¹⁰⁹ Ag	6.9±0.47
¹⁰⁹ Ag	6.01±1.33
⁶⁵ Cu	57.92±6.22

The average mass of silver is 6.12 ± 0.63 g

BRASS 6 g silver 57 g copper

Thank you for your attention.